368,911 Jobs
Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions) and self-correction. Particular applications of AI include expert systems, speech recognition and machine vision.
Explore how Trulia anticipates using AI to keep real estate listings interesting, current use cases in manufacturing and healthcare, the real dangers that bias in machine learning data sets can create, and much more.
AI can be categorized as either weak or strong. Weak AI, also known as narrow AI, is an AI system that is designed and trained for a particular task. Virtual personal assistants, such as Apple's Siri, are a form of weak AI. Strong AI, also known as artificial general intelligence, is an AI system with generalized human cognitive abilities. When presented with an unfamiliar task, a strong AI system is able to find a solution without human intervention.
Because hardware, software and staffing costs for AI can be expensive, many vendors are including AI components in their standard offerings, as well as access to Artificial Intelligence as a Service (AIaaS) platforms. AI as a Service allows individuals and companies to experiment with AI for various business purposes and sample multiple platforms before making a commitment. Popular AI cloud offerings include Amazon AI services, IBM Watson Assistant, Microsoft Cognitive Services and Google AI services.
While AI tools present a range of new functionality for businesses,the use of artificial intelligence raises ethical questions. This is because deep learning algorithms, which underpin many of the most advanced AI tools, are only as smart as the data they are given in training. Because a human selects what data should be used for training an AI program, the potential for human bias is inherent and must be monitored closely.
Some industry experts believe that the term artificial intelligence is too closely linked to popular culture, causing the general public to have unrealistic fears about artificial intelligence and improbable expectations about how it will change the workplace and life in general. Researchers and marketers hope the label augmented intelligence, which has a more neutral connotation, will help people understand that AI will simply improve products and services, not replace the humans that use them.
Arend Hintze, an assistant professor of integrative biology and computer science and engineering at Michigan State University, categorizes AI into four types, from the kind of AI systems that exist today to sentient systems, which do not yet exist. His categories are as follows:
AI is incorporated into a variety of different types of technology. Here are seven examples.
Artificial intelligence has made its way into a number of areas. Here are six examples.
The application of AI in the realm of self-driving cars raises security as well as ethical concerns. Cars can be hacked, and when an autonomous vehicle is involved in an accident, liability is unclear. Autonomous vehicles may also be put in a position where an accident is unavoidable, forcing the programming to make an ethical decision about how to minimize damage.
Another major concern is the potential for abuse of AI tools. Hackers are starting to use sophisticated machine learning tools to gain access to sensitive systems, complicating the issue of security beyond its current state.
Deep learning-based video and audio generation tools also present bad actors with the tools necessary to create so-called deepfakes, convincingly fabricated videos of public figures saying or doing things that never took place.
How data bias impacts AI outputsDespite these potential risks, there are few regulations governing the use AI tools, and where laws do exist, the typically pertain to AI only indirectly. For example, federal Fair Lending regulations require financial institutions to explain credit decisions to potential customers, which limit the extent to which lenders can use deep learning algorithms, which by their nature are typically opaque. Europe's GDPRputs strict limits on how enterprises can use consumer data, which impedes the training and functionality of many consumer-facing AI applications.
In 2016, the National Science and Technology Council issued a report examining the potential role governmental regulation might play in AI development, but it did not recommend specific legislation be considered. Since that time the issue has received little attention from lawmakers.
Self-service BI can be a big change for everyone in an organization. Expert Rick Sherman offers three principles to keep in mind ...
As more citizen data scientists take on work traditionally tasked to business analysts, organizations must consider how to ...
BACKGROUND IMAGE: Sergey Nivens/stock.adobe.com